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Study design and subjects 1 

We included 6,358 subjects from 4 independent cohorts and their GWAS data. The Korean 2 

AF Network is a consortium of four educational hospitals (Korea University Guro Hospital, 3 

Korea University Anam Hospital, Seoul National University Hospital, and Severance 4 

Hospital in the Yonsei University Health System) located in the Seoul area and concentrates 5 

on AF ablation related clinical studies. The Yonsei AF Ablation cohort and Korean AF 6 

Network were approved by the Institutional Review Board at each institution that participated 7 

in this study. Written informed consent was obtained from all patients. 8 

As a control group, 5,486 samples were recruited from the health examinee (HEXA) cohort 9 

(n=3,700) and Korean Multi-Rural Communities Cohort Study (n=1,786, Figure 1). Both 10 

control cohorts are ongoing studies and a major part of the Korea Genome Epidemiology 11 

Study (KoGES) initiated in 2001. The HEXA cohort recruited from a large urban population 12 

and the Korean Multi-Rural Communities Cohort recruited volunteers older than 40 years of 13 

age living in a rural area. All subjects recruited were Korean, excluding all other ancestries. 14 

The informed consent requirement in the HEXA and Korean Multi-Rural Communities 15 

Cohort were waived. 16 

 17 

Genotyping 18 

The genetic datasets were genotyped with an Array 6.0 chip and genotype calls were 19 

identified by using the Birdseed V2 algorithm. The quality control (QC)[1, 2] was performed 20 

to the following criteria: (1) deviation from the Hardy-Weinberg equilibrium with a 21 

P<1.0×10-7, (2) minor allele frequency (MAF) < 1%, and (3) call rate < 95%. We additionally 22 

excluded ambiguous variants including the indel variants. An imputation analysis was not 23 
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performed in order to prevent overfitting and to reduce any uncertainty. The inflation factor λ 1 

was estimated to be 1.043 after merging all our cohorts (Supplementary Figure 1A). The final 2 

531,766 SNPs were used for model training and the association analyses (Supplementary 3 

Figure 1B). 4 

 5 

Network model design 6 

CNN is an architecture for learning image data because that can filter spatial locality and 7 

capture the interactions between features using receptive fields.[3] Convolution operation, 8 

which plays an important role in CNN, performs feature extraction from images using 9 

optimizable parameters called kernel or filter. It has been widely applied in various fields, and 10 

it can adaptively learn spatial hierarchies of data features from low- to high-level patterns. 11 

The application of CNN was possible because SNP input data located in base pairs can be 12 

controlled with characteristics similar to images in that individual allele information is 13 

arranged on the same physical base pair. 14 

The first convolutional layer used a 3×1 convolutional kernel because of the one-dimensional 15 

genetic information encoded by the linear DNA strands. The pooling layer was not added for 16 

testing each SNP sequentially with the null hypothesis of no association. The number of 17 

convolution filters used in the convolution layer was calculated according to the input size as 18 

in the following equation (1): 19 𝐶𝑜𝑛𝑣 𝐾 = 𝑚𝑎𝑥(𝑛 8⁄ , 64),  (1) 

where n is the number of input SNPs and is designed to have a maximum of 64 kernels. As 20 

implied in the above equation, the first layer was led to the k-kernel to extract patterns of 21 

various features from the (X1, X2, ... Xn) input. In consideration of the protective effects with 22 
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dying neurons due to rare variants, the activation function was adopted as a leaky rectified 1 

linear unit (Leaky ReLU(𝑥) = 𝑚𝑎𝑥 (0.1𝑥, 𝑥)). After the convolution layer, k-filtered patterns 2 

derived from the convolution layer were connected to the fully connected layer (FC) for the 3 

classification. Here, the FC activation function was applied with a rectified linear unit 4 

(ReLU)., and the number of neurons was obtained by the following equation (2): 5 𝐹𝐶 𝑛𝑒𝑢𝑟𝑜𝑛𝑠 = 𝑚𝑎𝑥 (𝑛 ∗ 𝐾 8⁄ , 1,024).  (2) 

In the above equation, the FC layer is the determined maximum of 1,024 neurons by input 6 

SNPs and the number of filters. Finally, because the output layer was a probability for the 7 

phenotype, it was a probability from 0 to 1 by a sigmoid function. We implemented with 8 

Python (ver. 3.5) and TensorFlow (ver. 1.14.0) backend. Since the number of input SNPs 9 

differs depending on the P-value cutoff, the number of convolution filters and neurons of the 10 

FC layer were identified with a manual search. Using the mean square error and log-loss 11 

metrics, lightweight architecture was chosen unless a significant difference was found. 12 

 13 

CNN-GWAS model training 14 

The learning rate Lr began at 10-3, where the loss decreased by 0.99 times below 2 and by 15 

0.999 times below 1, eventually converging to 10-6 as the following equation (3): 16 

𝐿𝑟 = { 
 10−3                    𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑠𝑡𝑎𝑡𝑒             0.99𝐿𝑟                  𝑖𝑓 𝑙𝑜𝑠𝑠 < 2              0.999𝐿𝑟                 𝑖𝑓 𝑙𝑜𝑠𝑠 < 1              10−6                    𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 𝑠𝑡𝑎𝑡𝑒       .  (3) 

To avoid overfitting, the dropout rate was set to 10%, and early stopping was used to stop 17 

learning. If the loss was not continuously improved to less than 1% for the three epochs, 18 

learning was stopped. In addition, to add stability and improve the generalization, L1 and L2 19 
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regularization were both set to 10-5. The hyperparameters (learning rate, dropout rate, L1, and 1 

L2 regularization) were selected with grid search. 2 

The GWAS data showed that the control group was relatively larger than the case group. If 3 

this balance of the GWAS data is not considered, models are likely to be biased and trained 4 

into the control group. Therefore, we applied a stratified K-fold cross-validation technique 5 

that maintained a case/control ratio of 1:1 and induced the effect of cross-validation at the 6 

same time. The folding K used in the experiment was randomly determined from 5 to 10 for 7 

each epoch. 8 

The loss function applied a sigmoid cross-entropy loss function for the binary classification. 9 

To train our network, to achieve minimum log-loss, the network weights were optimized 10 

using an Adam optimizer. The applied cross-validation and validation set was used to select 11 

appropriate hyper-parameters and find the optimal model for classification.  12 

 13 

CNN-GWAS verification 14 

To verify our model, four validation processes were conducted. First, we repeated the 15 

training, validation, and test processes 5-times to demonstrate the reproducibility of the AF 16 

prediction and each sample was randomly constructed. Second, to examine whether SNPs of 17 

statistically non-significant P-values by a logistic regression did not really affect the AF 18 

prediction, a SNP list was constructed and verified based on a P≥0.99. Third, in order to 19 

identify that there was no predictive power for a phenotype without heritability (here are odd-20 

even registration numbers) other than AF, the validity was verified by replacing the AF label 21 

with an odd-even registration number. We chose the odd-even registration numbers to 22 

account for the unexpected bias by the random labels. Fourth, the saliency score of each SNP 23 
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for AF prediction was analyzed in all AF patients (n=872) using a model of best-performance 1 

among the model (Figure 2E). A Grad-CAM was applied to calculate the contribution score 2 

of each SNP for the AF prediction of the individual. To visualize the overall significance of 3 

SNPs contributing to the prediction, the saliency score analysis procedure was constructed 4 

with the following steps: (1) The SNP information of AF patients encoded by the additive 5 

model was sorted in a physical base-pair order, (2) AF patients that failed classification were 6 

excluded from feature visualization, (3) the saliency map was derived from 5 different 7 

models pre-trained with different sample configurations, taking into account the bias in the 8 

training phase, (4) the important SNPs contributing to AF prediction were calculated as the 9 

average of the saliency map for each patient, (5) the final mean saliency score was 10 

normalized, and (6) The threshold for the highlight of important features was set at 5%. The 11 

Grad-CAM equation (4) is described below: 12 𝑆𝑎𝑙𝑖𝑒𝑛𝑐𝑦 𝑠𝑐𝑜𝑟𝑒𝑖𝑐 = ∑ 𝑤𝑘𝑐𝐴𝑖𝑐𝑘 ,   (4) 

where the 𝑆𝑎𝑙𝑖𝑒𝑛𝑐𝑦 𝑠𝑐𝑜𝑟𝑒𝑖𝑐 is the vector represented contribution of each SNP for the AF 13 

prediction of an individual, i is the location of the feature map 𝐴𝑘, c is the class, and 𝑤𝑘𝑐 is 14 

the backpropagation gradient of the convolution kernel k. The mean contribution score of AF 15 

predictions was calculated as the mean of each saliency score of the individual SNPs in the 16 

predicted AF patients. Fifth, to identify whether the issue by class imbalance affected the AF 17 

prediction, we conducted a propensity-score matching study. 18 

  19 
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Supplementary Figure. 1. Quantile-quantile plot and Manhattan plot by GWAS of Korean AF 
cohort. 
 

 

 

Supplementary Figure 2. Performance evaluation results for validation-set. (A-C) The results of the 
AF prediction at each P-value cutoff in each ethnic-specific validation set. 
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Supplementary Table 1. Baseline summary of previously reported ethnic-specific GWAS cohorts. 

Characteristics Japanese [4] European [5] Multi-ethnic [6] 

Total EUR ASN AA BRAZ HISP 

Cases, N 8,180 60,620 65,446 
55,114 

(84.2%) 
8,180 

(12.5%) 
1,307 

(2.0%) 
568 

(0.9%) 
277 

(0.4%) 

Controls, N 28,612 970,216 539,544 
499,095 

(92.5%) 
28,612 

(5.3%) 
7,660 

(1.4%) 
1,096 

(0.2%) 
3,081 

(0.6%) 

Overall, N 36,792 1,030,836 604,990 
554,209 

(91.6%) 
36,792 

(6.1%) 
8,967 

(1.5%) 
1,664 

(0.3%) 
3,358 

(0.6%) 
EUR, European; ASN, Asian; AA, African American; BRAZ, Brazilian; HISP, Hispanic. 
 

 
Supplementary Table 2. The number of common SNPs by P-value cutoffs for each population type. 

P-value cutoff Population type 
Japanese [4] European [5] Multi-ethinic [6] 

< 0.001 2,211 5,401 4,732 

< 1.0×10-4 587 2,755 2,372 

< 1.0×10-5 262 1,704 1,540 

< 1.0×10-6 153 1,192 1,037 

< 5.0×10-8 91 814 723 

≥ 0.990 4,221 4,699 4,965 

SNPs, single nucleotide polymorphisms. 
 

 
Supplementary Table 3. Predictive performance for each best model by the SNP set derived from 
ethnic-specific GWAS. 
Population 
type 

P-value SNPs AUC Sens Spec PPV NPV Gini 
Log-

loss 
MSE 

Japanese <0.001 2,211 0.793 0.789 0.688 0.287 0.953 0.585 0.735 0.133 

European <1.0×10-6 1,192 0.808 0.743 0.745 0.317 0.948 0.615 0.701 0.106 

Multi-ethnic <1.0×10-5 1,540 0.836 0.760 0.762 0.338 0.952 0.672 0.564 0.084 

SNPs, single nucleotide polymorphisms; AUC, area under the curve; Sens, sensitivity; Spec, specificity; 
PPV, positive predictive value; NPV, negative predictive value; Gini, gini coefficient; MSE, mean 
square error. 
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Supplementary Table 4. Prediction performance of the AF associated SNP sets for the odd-even 
registration numbers. 

Population 
type 

P-value SNPs AUC Sens Spec PPV NPV Gini Log-loss MSE 

Japanese 

<0.001 2,211 0.50±0.01 0.50±0.05 0.51±0.05 0.51±0.01 0.51±0.01 -0.01±0.02 0.87±0.01 0.31±0.02 

<1.0×10-4 587 0.51±0.01 0.53±0.04 0.51±0.02 0.52±0.01 0.52±0.02 0.03±0.03 0.75±0.01 0.26±0.01 

<1.0×10-5 262 0.50±0.02 0.53±0.03 0.49±0.03 0.51±0.01 0.51±0.01 0.01±0.03 0.73±0.01 0.25±0.01 

<1.0×10-6 153 0.51±0.01 0.55±0.02 0.49±0.03 0.52±0.01 0.52±0.01 0.02±0.02 0.71±0.01 0.26±0.01 

<5.0×10-8 91 0.49±0.00 0.53±0.06 0.47±0.06 0.50±0.00 0.50±0.01 -0.01±0.01 0.70±0.00 0.25±0.00 

European 

<0.001 5,401 0.50±0.01 0.49±0.04 0.52±0.04 0.51±0.01 0.50±0.01 0.00±0.02 0.99±0.05 0.27±0.04 

<1.0×10-4 2,755 0.48±0.01 0.48±0.02 0.50±0.02 0.49±0.01 0.49±0.01 -0.04±0.01 0.87±0.01 0.28±0.03 

<1.0×10-5 1,704 0.48±0.01 0.49±0.07 0.50±0.08 0.50±0.01 0.49±0.01 -0.04±0.03 0.84±0.01 0.28±0.02 

<1.0×10-6 1,192 0.49±0.01 0.48±0.05 0.52±0.06 0.51±0.01 0.50±0.01 -0.02±0.02 0.79±0.01 0.26±0.02 

<5.0×10-8 814 0.50±0.01 0.53±0.05 0.47±0.03 0.50±0.01 0.50±0.01 -0.01±0.02 0.76±0.01 0.26±0.01 

Multi-

ethnic 

<0.001 4,732 0.49±0.01 0.52±0.06 0.49±0.07 0.5±0.02 0.50±0.02 -0.02±0.03 2.61±1.05 0.46±0.26 

<1.0×10-4 2,372 0.48±0.02 0.50±0.02 0.47±0.01 0.49±0.01 0.49±0.01 -0.04±0.03 0.83±0.03 0.26±0.01 

<1.0×10-5 1,540 0.49±0.01 0.45±0.01 0.56±0.01 0.51±0.00 0.50±0.00 -0.02±0.02 0.84±0.05 0.28±0.01 

<1.0×10-6 1,037 0.50±0.01 0.55±0.03 0.47±0.02 0.51±0.01 0.51±0.01 0.01±0.03 0.82±0.02 0.27±0.01 

<5.0×10-8 723 0.49±0.01 0.49±0.04 0.51±0.05 0.50±0.01 0.50±0.01 -0.02±0.02 0.87±0.02 0.28±0.00 

Data are shown as the mean ± SD. 
SNP, single nucleotide polymorphism; AUC, area under the curve; Sens, sensitivity; Spec, specificity; 
PPV, positive predictive value; NPV, negative predictive value; Gini, gini coefficient; MSE, mean 
square error. 
 

 

Supplementary Table 5. Characteristics of case and control groups after 1:1 propensity-score 
matching. 

Baseline characteristics 
Case 

(N = 862) 
Control 

(N = 862) P-value 

Age, year 50.4 ± 7.9 51.1 ± 8.0 0.070 

Male sex, % 695 (80.6) 694 (80.5) 0.951 

Body mass index, kg/m2 25.0 ± 3.0 25.1 ± 3.0 0.908 

Hypertension, % 299 (34.7) 268 (31.1) 0.112 

Diabetes, % 65 (7.5) 69 (8.0) 0.719 

Coronary artery disease, % 76 (8.8) 64 (7.4) 0.290 

Stroke, % 54 (6.2) 49 (5.7) 0.684 

Data are shown as the mean ± SD or n (%); 
 

 

Supplementary Table 6. The number of SNPs for PRS calculation in each GWAS. 

P-value cutoff* 
# of non-missing alleles used for scoring 

Japanese European Multi-ethnic 

< 5.0×10-8 30 330 296 

< 1.0×10-6 62 482 414 

< 1.0×10-5 112 714 604 

< 1.0×10-4 318 1,218 1,020 

< 0.001 1,512 2,848 2,458 

≥ 0.99 376 504 480 
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* r2 was set to 0.1 in all ethnicities. 
 

BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance
Supplemental material placed on this supplemental material which has been supplied by the author(s) Open Heart

 doi: 10.1136/openhrt-2021-001898:e001898. 9 2022;Open Heart, et al. Kwon O-S



11 

 

Supplementary References 

1 Anderson CA, Pettersson FH, Clarke GM, et al. Data quality control in genetic case-
control association studies. Nat Protoc 2010;5:1564-73. 
2 Winkler TW, Day FR, Croteau-Chonka DC, et al. Quality control and conduct of 
genome-wide association meta-analyses. Nat Protoc 2014;9:1192-212. 
3 Low SK, Takahashi A, Ebana Y, et al. Identification of six new genetic loci associated 
with atrial fibrillation in the Japanese population. Nat Genet 2017;49:953-8. 
4 Nielsen JB, Thorolfsdottir RB, Fritsche LG, et al. Biobank-driven genomic discovery 
yields new insight into atrial fibrillation biology. Nat Genet 2018;50:1234-9. 
5 Roselli C, Chaffin MD, Weng LC, et al. Multi-ethnic genome-wide association study 
for atrial fibrillation. Nat Genet 2018;50:1225-33. 

 

BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance
Supplemental material placed on this supplemental material which has been supplied by the author(s) Open Heart

 doi: 10.1136/openhrt-2021-001898:e001898. 9 2022;Open Heart, et al. Kwon O-S


