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Appendix A 

 

The training of SVM models for prediction and classification is traditionally formulated as the goal of learning a 

maximum-margin hyperplane (i.e., a decision boundary) that uses information in features to separate observations 

belonging to two different labeled classes. In the context of post-PCI risk stratification, these features may correspond 

to demographic, comorbidity and laboratory variables, with the labeled observations corresponding to patients who 

experience adverse outcomes (positive examples) or remain event free (negative examples). As shown in Figure A1, 

the maximum margin hyperplane corresponds to the decision boundary with the maximal distance from any of the 

training examples. The choice of a maximum-margin hyperplane is supported by theoretical results in statistical 

learning that this approach maximizes the ability to correctly classify previously unseen examples [4]. 

Denoting the training data for model development as n training examples of the form (x1,y1),...,(xn,yn), where each 

(xi,yi) tuple denotes the risk variables xi for patient i and the corresponding label yi ∈ {+1,-1} signifies whether the 

patient experienced an event (+1) or remained event free (-1), the traditional formulation of SVM training learns a 

maximum-margin linear boundary of the form ŷi = sgn(wTxi). In this formulation ŷi is the predicted label for 

observation xi and sgn(.) represents the signum function (+1 if input is greater than zero and -1 otherwise). The weights 

w, which parameterize the linear boundary, are learned during training by solving the following convex optimization 

problem: 
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where slack variables ξi accounts for training examples that are not linearly separable.  

Details on solving the SVM optimization problem are presented elsewhere [5]. Essentially, the formulation above 

corresponds to finding the maximum margin hyperplane (i.e., the ||w||2 term in the minimization objective) subject to 

classifying the training examples correctly or using some minimal slack to account for cases that are not linearly 

separable. To further obtain probabilistic estimate for patients, SVM classification is supplemented with Platt scaling 
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of the outputs (Appendix C). 

 

Appendix B 

 

Similar to the notation used in Appendix A, the training data for developing an SVM model optimized for cohort-level 

performance can be represented as n training examples of the form (x1,y1),...,(xn,yn), where each (xi,yi) tuple denotes the 

risk variables xi for patient i and the corresponding label yi ∈ {+1,-1} signifying whether the patient experienced an 

event (+1) or remained event free (-1). The AUROC for a model parameterized by the weight vector w (i.e., ŷi = wTxi 

is the label predicted by the model) can then be computed from the number of swapped pairs Φ corresponding to the 

number of pairs of examples that are ranked in the incorrect order as: 
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and n+ and n- represent the number of positive and negative examples respectively. 

An alternate formulation of measuring the AUROC can be obtained by re-expressing the training data in terms of 

comparable positive-negative pairs. In this case, the data are represented as tuples of the form (xij,yij) where yij = 1 and 

xij = xi - xj for a given pair of positive (xi) and negative (xj) training examples. The error between the predicted ŷij = 

wTxij = (wTxi - wTxj) and yij is then proportional to 1 - AUROC. Defining this quantity as the AUROC loss function: 
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where y = (1,..,1)T and ŷ is a vector denoting the ŷij predicted by the model stacked together, SVM training can be 

framed as finding a solution to the following optimization problem: 
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where ξ corresponds to the slack variable, C represents the cost variable, and Y is the universe of possible vectors ŷ. 

Due to the exponential size of Y, the problem is  solved efficiently using a sparse approximation-based approach [1,6].  

Similar to the discussion for the traditional SVM in Appendix A, probabilistic estimates for SVM classification 

optimized for cohort-level performance metrics are obtained through Platt scaling of the model outputs (Appendix C). 

 

Appendix C 

 

To produce probabilistic risk estimates for each patient, the output produced by traditional SVM classification 

(Appendix A) or the use of SVM classification optimized for cohort-level performance (Appendix B) are transformed 

using the improved method for Platt scaling [2] proposed by Lin et al. [3]. In this case, the probability of an event is 

estimated as: 
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where the parameters A and B of Platt scaling are determined by regularized maximum likelihood estimation on data 

from patients undergoing PCI in 2004 [3]. 
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Appendix Figure: 

 

 

Figure A1: Given training data from two different classes (colored red and black) there are a potentially infinite 
number of decision boundaries that can separate the data (left panel). The maximum-margin hyperplane, roughly 
speaking, chooses the boundary that is 'in the middle' and provides a separation from the closest examples in an 
attempt to maximize the margin of error (right panel). 
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