Supplementary: Table 3: Summary of Calibration Model Performance Measures for Externally Validated Laboratory-Based and Non-Laboratory-Based Equations

Author, Year	Equation	Sex	Calibration results	
	Populations for			
	external validation			
			Non-laboratory-based	Laboratory-based
Schiborn C et	EPIC-Potsdam			
al. 2021	Germany-	Both	The CP was well-calibrated	The CP was well-calibrated
	Heidelberg		for the majority of individuals	for the majority of individuals
			in the lower nine deciles of	in the lower nine deciles of
			predicted risk, while it	predicted risk, while it
			slightly overestimated the	slightly overestimated the
			risk in the highest decile.	risk in the highest decile
			O: E ratio=1.05, 95%CI	O: E ratio=1.11, 95%Cl
			(0.97-1.13)	(1.03-1.20),
	D' Agostino			
	Framingham			
	Germany -	Both	CP showed a substantial	CP showed a substantial
	Heidelberg		overestimation	overestimation
	Germany-	Both	CP showed a substantial	CP showed a substantial
	Potsdam		overestimation	overestimation
Albarqouni L et	D' Agostino			
al 2019	Framingham			
	Australia	Female	CP showed an	CP showed an
			overestimation of the risk	overestimation of the risk
		Male	CP showed an	CP showed an
			overestimation of the risk	overestimation of the risk
Al-Shamsi S et	D' Agostino			
al 2020	Framingham			
	United Arab	Female	CP showed an	CP showed an

	Emirates		overestimation of the risk	overestimation of the risk
		Male	CP showed an	CP showed an
			overestimation of the risk	overestimation of the risk
Kariuki JK et al	D' Agostino			
2017	Framingham			
	USA	Female	Hosmer-Lemeshow	Hosmer-Lemeshow
			goodness-of-fit = 14.2 (p-	goodness-of-fit = 10.5 (p-
			value = 0.11); good.	value = 0.31); good.
		Male	Hosmer-Lemeshow	Hosmer-Lemeshow
			goodness-of-fit = 25.8 (p-	goodness-of-fit = 21.8 (p-
			value = 0.002); poor.	value = 0.01); poor.
			CP showed an	CP showed an
			overestimation of the risk in	overestimation of the risk in
			the 2nd decile.	the 1st, 2nd, 3rd, and 4th
				deciles.
	INTERHEART			
Joseph P et al	Africa	Both	CS = 0.75, 95%CI (0.36-	CS= 0.98, 95%CI
2018			1.15)	(0.66-1.30)
	China	Both	CS= 0.81, 95%CI (0.71-	CS= 0.88, 95%CI (0.78-
			0.91)	0.98)
	Middle East	Both	CS = 1.06, 95%CI (0.86-	CS = 1.41, 95%CI (1.18-
			1.26)	1.63)
	North	Both	CS = 0.77, 95%CI (0.68-	CS = 1.04 95%CI (0.93-
	America/Europe		0.87)	1.15)
	South America	Both	CS = 0.87, 95%CI (0.77-	CS = 1.11, 95%CI (0.97-
			0.98)	1.24)
	South Asia	Both	CS = 0.75, 95%CI (0.65-	CS = 1.04, 95%CI (0.95-
			0.86)	1.13)

	Southeast Asia	Both	CS = 0.92, 95%CI (0.72-	CS = 0.99, 95%CI (0.76-
			1.12)	1.22)
Hassannejad R	PARS/SPARS			
et al. 2021				
	Iran	Both	slightly overestimated the	slightly overestimated the
			event rate	event rate
			Nam-D'Agostino χ² = 29.89,	Nam-D'Agostino χ2= 28.57,
			p-value = 0.001	p-value= 0.001
Ueda, P et al.	Globo-risk			
2017	extension			
	Australia, Iran,	Both	not reported	not reported
	Scotland			
WHO CVD	WHO 2019			
RCWG 2019				
	Australia, China,	Both	not reported	not reported
	Japan, Singapore,			
	New Zealand,			
	Iran, Thailand, and			
	UK			
Li J et al. 2021	WHO 2019			
	China	Male	Calibration χ² = 388.18, p-	Calibration χ² = 321.55, p-
			value < 0.001	value < 0.001
		Women	Calibration $\chi^2 = 439.99$, p-	Calibration $\chi^2 = 280.69$, p-
			value < 0.001	value < 0.001

RCWG, Research Chart Working Group; CP, calibration plot; CS, calibration slope, O:E, observed: expected.