Introduction
Cardiovascular disease (CVD) is the leading cause of mortality worldwide; in the USA, coronary disease is implicated in one in six deaths.1 Treatment and prevention of CVD is a high priority both domestically and worldwide. Contributors to CVD have historically been understood to include the ‘traditional’ risk factors, such as family history, obesity, tobacco use, diabetes, dyslipidaemia and hypertensive disease.2 In recent years, a number of clinical trials such as Justification for the Use of Statins in Prevention: an Intervention Trial Evaluating Rosuvastatin (JUPITER), Pravastatin or Atorvastatin Evaluation and Infection Therapy–Thrombolysis in Myocardial Infarction 22 (PROVE IT-TIMI 22), and Canakinumab Antiinflammatory Thrombosis Outcome Study (CANTOS) have shed light on inflammatory contributions to CVD.3–5 Understanding and interest in the processes that contribute to atherosclerosis, and thus CVD, have continued to progress in conjunction with the development of novel imaging technologies that allow for earlier and finer characterisation of the atherogenic process.
Atherogenesis, the process of plaque build-up in the arterial wall, is thought to proceed in an ordinal fashion1 (figure 1). The first stage is characterised by qualitative changes to endothelial cells lining the vessel lumen and the subsequent expression of proadhesive molecules that recruit immune cells in response to stimuli such as lipid build-up or hypertensive pressure. Recruited leucocytes then initiate residence in the tunica intima. Monocyte-derived macrophages take up lipoprotein particles to become foam cells. Smooth muscle cells also traverse from the tunica media to the tunica intima. These cells produce extracellular matrix components such as elastin and collagen, which form a cap that covers the plaque. Plaque growth can compromise blood flow through the vessel lumen, resulting in ischaemia and symptoms of impaired perfusion such as stable angina or peripheral arterial disease. Alternatively, plaque rupture can occur, resulting in infarction.2 Plaque rupture is responsible for the majority of myocardial infarction (MI), with estimates ranging from 60% to 70%, the majority of these plaques being non-calcified.3 4
The progression of atherosclerosis by different imaging modalities. This figure depicts how atherosclerosis begins with endothelial dysfunction, followed by expression of proadhesive molecules that recruit monocytes in response to stimuli such as hypertensive pressure or lipid build-up. These monocytes then take up lipids to become foam cells. Additionally, smooth muscle cells migrate from the tunica media to the tunica intima, where they produce elastin and collagen, which create a cap that covers the plaque. Plaque growth can compromise blood flow to distal regions, resulting in stable angina or peripheral arterial disease. Alternatively, erosion of the fibrous cap can expose prothrombotic mediators, resulting in clot formation and infarction, either in the myocardium or the brain. Imaging modalities for these stages should be selected based on the physiological changes expected at each stage. CAC, coronary artery calcium; FDG-PET, 18-fluorodeoxyglucose positron emission tomography; FMD, flow-mediated dilatation; NaF, sodium fluoride; IVUS, intravascular ultrasound; PAT, peripheral arterial tonometry, small arteries; PWV, pulse wave velocity, large arteries.
Primary prevention, or preventative measures that occur before the relevant event occurs, offers great opportunity for reducing both human and economic burdens of CVD.5 6 Currently, treatment decisions are based on demographics and clinically obtained data, such as blood pressure, lipid levels and current treatments.7 Novel preventative strategies for CVD are continually being developed; imaging data may be helpful in determining which patients are at the highest risk or which patients may benefit most from a particular treatment. Information on risk and response, in turn, can be used to appropriately titrate treatment to minimise the burden of unnecessary costs and side effects.
While multiple reviews on the imaging of atherosclerosis have been published, none have placed special emphasis on tailored imaging modalities with the stages of atherosclerosis model.8–12 This review summarises the various imaging modalities currently in use, both clinically and in the research setting, and proposes a paradigm in which different modalities have different levels of usefulness for different stages of atherogenesis. Further research using large populations will be needed to validate this hypothesis; it is possible that appropriately choosing an imaging modality is critical to the success or failure of investigation, both interventional and observational. Herein, we have grouped imaging modalities into one of two categories: functional or anatomical. We acknowledge not all modalities will fit this structure perfectly. For example, aortic MRI can be used to obtain both structural (i.e., aortic wall thickness or lumen area) and functional (i.e., aortic distensibility) parameters.