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ABSTRACT
Background and objective  This review compares non-
laboratory-based and laboratory-based cardiovascular 
disease (CVD) risk prediction equations in populations 
targeted for primary prevention.
Design  Systematic review.
Methods  We searched five databases until 12 March 
2024 and used prediction study risk of bias assessment 
tool to assess bias. Data on hazard ratios (HRs), 
discrimination (paired c-statistics) and calibration were 
extracted. Differences in c-statistics and HRs were 
analysed. Protocol: PROSPERO (CRD42021291936).
Results  Nine studies (1 238 562 participants, 46 cohorts) 
identified six unique CVD risk equations. Laboratory 
predictors (eg, cholesterol and diabetes) had strong HRs, 
while body mass index in non-laboratory models showed 
limited effect. Median c-statistics were 0.74 for both 
models (IQR: lab 0.77–0.72; non-lab 0.76–0.70), with a 
median absolute difference of 0.01. Calibration measures 
between laboratory-based and non-laboratory-based 
equations were similar, although non-calibrated equations 
often overestimated risk.
Conclusion  The discrimination and calibration measures 
between laboratory-based and non-laboratory-based 
models show minimal differences, demonstrating the 
insensitivity of c-statistics and calibration metrics to 
the inclusion of additional predictors. However, in most 
reviewed studies, the HRs for these additional predictors 
were substantial, significantly altering predicted risk, 
particularly for individuals with higher or lower levels of 
these predictors compared with the average.

INTRODUCTION
Cardiovascular disease (CVD) is the major 
cause of mortality and morbidity globally.1 
More than half a billion people globally 
were affected by CVD in 2021, resulting in 
20.5 million deaths, representing nearly a 
third of all deaths worldwide.2 3 The majority 
of CVD deaths occur in low- and middle-
income countries (LMICs).4 The mortality 
trends in high-income countries demonstrate 

that deaths attributed to CVD are mostly 
preventable.5

CVD risk prediction equations, which 
account for various risk factors of CVD, are 
frequently used in primary care settings to 
identify individuals who have a higher risk of 
developing CVD and who would likely benefit 
from preventive measures.6 7

While numerous CVD risk prediction 
equations have been developed and used for 
estimating CVD risk and guiding treatment 
strategies,8–10 their application in LMICs is 
limited due to the high cost of blood lipid-
level measurements, which many equations 
rely on as inputs.11 There are also CVD risk 
equations that use alternative non-laboratory 
measures, such as body mass index (BMI).12 13 
Although developed for use in LMIC settings, 
most non-laboratory CVD risk equations have 
been developed using data from non-LMIC 
populations.14 15

While previous studies have compared 
non-laboratory and laboratory equations in 
various settings,16–18 a comprehensive review 
comparing measures of discrimination and 
calibration between laboratory-based and 
non-laboratory-based risk equations, as well as 
evaluating the effect of hazard ratios (HRs) for 
additional predictors in predicting CVD risk, 
was lacking. There was a need for a systematic 
comparison between laboratory-based and 
non-laboratory-based equations, focusing 
on discrimination, calibration measures and 
the HRs of additional predictors, which is 
important for assessing the relative predic-
tive performances of the competing CVD 
risk equations across diverse populations to 
ensure their generalisability.19 20

This review aims to assess and compare 
the performance of laboratory and non-
laboratory CVD risk equations in popula-
tions different from those in which they were 
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originally developed. The review has relevance to LMICs, 
aiming to identify effective risk assessment and interven-
tion strategies with limited facilities, thus contributing to 
global efforts to reduce the burden of CVD.

METHODS
Scope of review
This review addressed three key questions: (1) to compare 
the HRs of additional predictors in CVD risk prediction; 
(2) to identify externally validated non-laboratory-based 
and laboratory-based CVD equations from the same 
cohort and outline the reported model performance 
measures (discrimination and calibration) and (3) to 
analyse overall differences in model performance meas-
ures between laboratory-based and non-laboratory equa-
tions.

Search strategy and selection criteria
This systematic review protocol was registered under 
PROSPERO (CRD42021291936). Our reporting adheres 
to the Preferred Reporting Items for Systematic Review 
and Meta-Analyses (PRISMA) guidelines21 and the Meta-
Analysis of Observational Studies in Epidemiology22 
(online supplemental appendix B). We systematically 
searched for studies published in five databases: PubMed, 
Scopus, Web of Science, ProQuest Dissertations and 
Theses Global and Google Scholar. The search began 
with the start of the review on 4 April 2023 and continued 
until 12 March 2024. We used combinations of search 
terms related to “laboratory-based”, “non-laboratory-
based” and “cardiovascular risk scores” (detailed search 
terms and strategies provided in online supplemental 
appendix A). Searches were deliberately broad to encom-
pass all relevant studies. Additionally, reference lists of 
included studies were screened to find further relevant 
studies. The included studies were published between 
2002 and 2021.

Inclusion and exclusion criteria
Articles were included in this study if they met the 
following criteria: (a) compared laboratory-based and 
non-laboratory-based CVD risk prediction equations 
within the same study population; (b) were undertaken 
in a study population that differed to the population 
that the risk equation was derived in (ie, external vali-
dation study); (c) equations that were not recalibrated 
for the target population and (d) papers published in 
the English language. We focused on externally vali-
dated equations since external validation is essential for 
assessing the reproducibility and generalisability of a 
prediction model in diverse sets of new populations.23 We 
only examined equations externally validated in popu-
lations where recalibration was not undertaken prior to 
validation. Recalibration aims to align the risks predicted 
by the equation with the risks observed in the target popu-
lation. Recalibration approaches would, therefore, mask 
any differences in calibration between laboratory and 
non-laboratory equations if included in the analysis.24 25 

Articles were excluded if: (a) the study included people 
with existing CVD or a history of CVD at baseline; (b) 
non-English literature; (c) conference abstracts and (d) 
case reports.

Screening, quality assessment and data extraction
Titles and abstracts were independently reviewed by two 
authors (YMA and SMA). Full-text reviews were inde-
pendently undertaken by the same authors. Research 
articles that fulfilled the inclusion criteria were evaluated 
for quality assessment by two authors (YMA and SMA). 
Disagreements on article selection and quality assessment 
were resolved through discussion. Two authors (YMA and 
SMA) extracted data using a predefined data extraction 
form. We extracted study-level data on age, sex, year of 
data collection, number of study participants, types of 
CVD risk equations and outcome measures (HRs, paired 
c-statistics, CIs, calibration χ2, calibration plots, cali-
bration slopes (CSs), observed and expected ratio). A 
preliminary version of the Cochrane Prediction Study 
Risk of Bias Assessment Tool for cohort studies was used 
to assess the level of bias by evaluating selected parame-
ters, including participant selection, predictors, outcome, 
sample size, participant flow and analysis26 27(online 
supplemental appendix D).

Data synthesis and analysis
This systematic review compared CVD risk equations 
using laboratory-based models with cholesterol and 
non-laboratory-based models using variables, such as 
BMI, synthesising adjusted HRs and regression coef-
ficients from multivariable models. For example, the 
WHO-2019 and Ueda Globorisk equations extracted 
HRs for risk factors, such as age, systolic blood pressure, 
diabetes, smoking, total cholesterol and BMI. Similarly, 
the D’Agostino Framingham and Persian Atherosclerotic 
CVD equations incorporated cholesterol and diabetes 
in laboratory-based models, and BMI, waist–hip ratio 
(WHR) or diabetes history in non-laboratory models. The 
D’Agostino Framingham equations used log-transformed 
continuous variables to improve discrimination, calibra-
tion and minimise the effects of extreme observations. 
The estimated regression coefficients for the D’Agostino 
Framingham and Persian Atherosclerotic CVD equations 
were presented alongside the HRs. We included HRs 
because they directly quantify the impact of each predictor 
on individual CVD risk, providing clinically relevant 
insights beyond c-statistics. HRs are particularly useful for 
comparing laboratory-based and non-laboratory-based 
models, as large differences in HRs can significantly influ-
ence risk predictions, thereby enhancing model sensi-
tivity and clinical utility.28 29 Calibration measures are also 
less sensitive to changes in predictor inclusion and may 
be less effective in capturing the influence of additional 
predictors.24 Discrimination, a measure of how well a risk 
prediction equation distinguishes between those with and 
without the disease, was assessed by extracting data on 
c-statistics from the included studies. C-statistics typically 
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range from 0.5 (random concordance) to 1 (perfect 
concordance).30–32 As a standard, c-statistics<0.70 indi-
cate inadequate discrimination, between 0.70 and 0.80 
are considered acceptable and between 0.80 and 0.90 are 
considered excellent.6 33

We computed c-statistics differences between 
laboratory-based and non-laboratory-based equations by 
subtracting the non-laboratory-based c-statistics from the 
laboratory-based, which were compared within the same 
population. Forest plots were used to present the c-statis-
tics and c-statistics differences. We calculated the abso-
lute differences for each pair of c-statistics values; then, 
we computed the median absolute difference in c-statis-
tics across all studies. Differences in c-statistics (changes 
in c-statistics) are classified into four categories. Large is 
used when the difference is 0.1 or greater; moderate for 
0.05 to 0.1; small for 0.025 to 0.05 and very small for less 
than 0.025. Because c-statistics range from 0.5 to 1.0, the 
0.1 cut-off point for large was set because it represents 
20% of the possible range.34

We compared calibration between laboratory and non-
laboratory CVD risk equations using four calibration 
measures (where available in the publications). First, 
we examined two χ2 metrics: the Hosmer–Lemeshow χ2 
and Greenwood Nam-D’Agostino statistics, considering a 
significance level of p value<0.05 or a χ2 statistic exceeding 
20 as indicative of a significant lack (poor calibration).35 36 
Second, we examined how the population’s CVD risk was 
divided into risk deciles and plotted the predicted event 
rates against the observed.16 Third, we evaluated the ratio 
of expected to observed outcomes, or their probabilities, 
with a ratio close to 1 indicating effective model calibra-
tion.37 Finally, we considered a model’s CS, where a slope 
below 1 suggests overfitting, while slopes above 1 suggest 
underfitting. A slope near 1 indicates good calibration 
in the validation dataset.38 All analyses were performed 
using R (version 4.3.0).

RESULTS
Overall, nine studies met the inclusion criteria,11 16 17 39–43 
with 1 238 562 study participants, from 46 cohorts included 
(online supplemental appendix C).11 16 18 39 41 44–65 The 
cohorts consisted of 5 LMICs, along with 19 upper-
middle-income and high-income countries, making a 
total of 24 countries analysed (online supplemental table 
1). The median years of enrollment of cohorts used for 
external validation of the included studies ranged from 
1961 to 2008 (a study may use more than one cohort for 
external validation). Studies excluded from the full-text 
stage are detailed in online supplemental appendix E. 
In general, the studies included were found to have a 
minimal risk of bias.

For included studies, six non-laboratory-based risk 
equations along with their corresponding laboratory-
based risk equations were reported: WHO-2019; D’Agos-
tino Framingham; Ueda Globorisk extension; European 
Prospective Investigation into Cancer and Nutrition 

(EPIC); INTERHEART and Persian Atherosclerotic 
CVD Risk Stratification (PARS). The laboratory measure-
ments included in the risk equations varied. WHO-2019 
and the Ueda Globorisk extension laboratory equations 
included both total cholesterol and diabetes as labo-
ratory predictors,11 18 while D'Agostino Framingham, 
PARS and EPIC used total cholesterol, HDL cholesterol 
and diabetes,15 16 66 and the INTERHEART equation 
used apolipoproteins.67 (online supplemental table 2) 
provides a summary of the variables included in each 
equation, the study populations and predicted outcome 
events. Non-laboratory-based versions of WHO-2019, the 
Ueda Globorisk extension and D’ Agostino Framingham 
used BMI as a substitute for laboratory measures,11 15 18 
while EPIC, SPARS and INTERHEART used WHR and/
or non-clinical factors, such as diet.16 65 67

From the included studies, we extracted data on 64 
HRs, 30 paired c-statistics (30 laboratory-based and 30 
non-laboratory-based),11 16 17 39–43 5 paired calibration 
χ2,41 43 65 22 paired calibration plots,11 16 17 40 41 43 65 7 paired 
CSs17 and 1 paired observed–expected ratio43 (online 
supplemental table 3).

Comparison of HRs and performance between non-
laboratory-based and laboratory-based CVD risk equations
For most risk equations examined, HRs for laboratory-
based measures (eg, diabetes and cholesterol) were 
higher than those for non-laboratory-based measures, 
such as BMI. It is important to note that these HRs are 
unstandardised, meaning the variables (eg, binary for 
diabetes, continuous for cholesterol in mg/dL and BMI 
in kg/m²) are measured in their original units, they are 
not expressed on a common scale. For example, in the 
WHO-2019 CVD risk study using data from the emerging 
risk factors collaboration in women, the HRs for diabetes 
(HR 2.91, 95% CI 2.59 to 3.27) and total cholesterol (HR 
1.23, 95% CI 1.20 to 1.26) in the laboratory-based model 
were higher than the HR for BMI (HR 1.14, 95% CI 1.10 
to 1.18), which was included in the non-laboratory-based 
models. Both models included smoking, age and systolic 
blood pressure. The laboratory-based model had a c-sta-
tistics of 0.757 (95% CI 0.749 to 0.765), compared with 
0.738 (95% CI 0.730 to 0.746) for the non-laboratory-
based model.

In the Ueda Globorisk extension risk equation, the 
laboratory-based model included diabetes (HR 1.88, 
95% CI 1.71 to 2.06) and total cholesterol (HR 1.19, 
95% CI 1.16 to 1.22), while the non-laboratory-based 
model included BMI (HR 1.14, 95% CI 1.11 to 1.17). The 
c-statistics for the laboratory-based model was 0.71 (95% 
CI 0.70 to 0.72) compared with 0.69 (95% CI 0.68 to 0.70) 
for the non-laboratory-based model (table  1). In the 
Framingham cohort dataset in women, the laboratory-
based model included total cholesterol (HR 3.35, 95% CI 
2.00 to 5.62) and HDL cholesterol (HR 0.49, 95% CI 0.35 
to 0.69), while the non-laboratory-based model substi-
tuted BMI (HR 1.67, 95% CI 0.98 to 2.85). The c-statis-
tics for the laboratory-based model was 0.793 (95% CI 
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Table 1  HRs and performance of the WHO-2019 and ueda globorisk CVD risk equations

WHO-2019 risk equation (based on ERFC data)

Outcomes: fatal or non-fatal MI or CHD death

Women

Risk factor
Laboratory-based
HR (95% CI)

Non-laboratory-based
HR (95% CI)

Age at baseline per 5 years 1.66 (1.60 to 1.73) 1.69 (1.62 to 1.75)

SBP per 20 mm Hg 1.38 (1.34 to 1.42) 1.40 (1.36 to 1.45)

History of diabetes 2.91 (2.59 to 3.27) NA

Current smoking 2.83 (2.61 to 3.08) 2.94 (2.71 to 3.20)

Total cholesterol per 1 mmol/L 1.23 (1.20 to 1.26) NA

BMI per 5 kg/m2 NA 1.14 (1.10 to 1.18)

C-statistics (95% CI) 0.7570 (0.7492 to 0.7648) 0.7382 (0.7301 to 0.7463)

Men

Age at baseline per 5 years 1.43 (1.40 to 1.46) 1.44 (1.41 to 1.48)

SBP per 20 mm Hg 1.30 (1.28 to 1.33) 1.31 (1.28 to 1.33)

History of diabetes 1.89 (1.75 to 2.04) NA

Current smoking 1.76 (1.68 to 1.85) 1.81 (1.73 to 1.90)

Total cholesterol per 1 mmol/L 1.26 (1.24 to 1.28) NA

BMI per 5 kg/m2 NA 1.18 (1.15 to 1.22)

C-statistics (95% CI) 0.6890 (0.6839 to 0.6941) 0.6660 (0.6610 to 0.6720)

Outcomes: fatal or non-fatal stroke

Women

Age at baseline per 5 years 1.70 (1.64 to 1.76) 1.69 (1.63 to 1.75)

SBP per 20 mm Hg 1.51 (1.46 to 1.56) 1.54 (1.49 to 1.60)

History of diabetes 2.35 (2.06 to 2.70) NA

Current smoking 2.11 (1.92 to 2.31) 2.10 (1.91 to 2.31)

Total cholesterol per 1 mmol/L 1.05 (0.95 to 1.16) NA

BMI per 5 kg/m2 NA 1.02 (0.98 to 1.06)

C-statistics (95% CI) 0.7440 (0.736 to 0.753) 0.7367 (0.7282 to 0.7453)

Men

Age at baseline per 5 years 1.64 (1.58 to 1.70) 1.63 (1.57 to 1.69)

SBP per 20 mm Hg 1.56 (1.52 to 1.61) 1.58 (1.53 to 1.63)

History of diabetes 1.88 (1.68 to 2.11) NA

Current smoking 1.65 (1.53 to 1.77) 1.65 (1.53 to 1.78)

Total cholesterol per 1 mmol/L 1.03 (1.00 to 1.06) NA

BMI per 5 kg/m2 NA 1.08 (1.03 to 1.13)

C-statistics (95% CI) 0.7265 (0.7186 to 0.7345) 0.7233 (0.7152 to 0.7315)

Ueda globorisk extension

Women and men combined

Systolic blood pressure per 10 mm Hg 1.18 (1.16 to 1.19) 1.18 (1.17 to 1.20)

Diabetes 1.88 (1.71 to 2.06) NA

Female with diabetes 1.50 (1.29 to 1.75) NA

Smoker 1.55 (1.44 to 1.66) 1.52 (1.42 to 1.64)

Female smoker 1.38 (1.21 to 1.59) 1.42 (1.24 to 1.63)

Total cholesterol per 1 mmol/L 1.19 (1.16 to 1.22) NA

BMI per 5 kg/m2 NA 1.14 (1.11 to 1.17)

C-statistics (95% CI) 0.71 (0.70 to 0.72) 0.69 (0.68 to 0.70)

BMI, body mass index; CHD, coronary heart disease; CVD, cardiovascular disease; ERFC, emerging risk factors collaboration; HR, hazard ratio; MI, 
myocardial infarction; NA, not applicable; SBP, systolic blood pressure.
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0.772 to 0.814), and for the non-laboratory-based model, 
0.785 (95% CI 0.764 to 0.806). In the ICS cohort, the 
PARS laboratory-based model included the additional 
predictor of total cholesterol>300 mg/dL (HR 1.73, 
95% CI 1.17 to 2.56), with c-statistics of approximately 
0.73 for both the non-laboratory-based model (95% CI 
0.71 to 0.74) and the laboratory-based model (95% CI 
0.71 to 0.75) (table 2).

Comparison of discrimination measures
Overall, most CVD risk equations showed good discrimi-
nation, with 26 of the 30 c-statistics pairs being>0.7. The 
median external validation c-statistics in the laboratory-
based equations was 0.74 (IQR, 0.77–0.72), and the median 
external validation c-statistics in the non-laboratory-based 
was also 0.74 (IQR, 0.76–0.70) online supplemental 
figure 1. There was little difference in c-statistics between 
laboratory-based and non-laboratory-based. The median 
absolute difference in the c-statistics between laboratory-
based and non-laboratory-based was 0.01 (IQR, 0.01–
0.00) (online supplemental figure 2). Within individual 
studies, 26 out of the 30 c-statistics differences were very 
small (differences in c-statistics<0.025) and 4 c-statistics 
differences were considered small (differences in c-statis-
tics were 0.025–0.05); 3 of which were observed in the 
INTERHEART equation and 1 in the Globorisk equation.

Comparison of calibration measures between laboratory-
based and non-laboratory-based equations
Overall, calibration measures of the externally validated 
risk equations suggested both the laboratory-based and 
non-laboratory-based D’Agostino Framingham risk 
prediction equations,68 overestimating the observed 
risk in Australia,39 Germany16 and the UAE population40 
and the Atherosclerosis Risk in Communities from four 
distinct US provinces: Forsyth County, North Carolina; 
Jackson, Mississippi; suburbs of Minneapolis, Minnesota 
and Washington County, Maryland. Both the laboratory-
based and non-laboratory-based EPIC-Potsdam equations 
marginally overestimated risk in the highest decile of 
predicted risk. The observed and expected ratios for the 
EPIC-Potsdam equation were O: E=1.05 (95% CI 0.97 to 
1.13) for the non-laboratory-based and O: E=1.11 (95% 
CI 1.03 to 1.20) for the laboratory-based in the Heidel-
berg, German populations, respectively.16

According to the INTERHEART equation CSs, in 
South America, the equation showed a degree of over-
fitting in the non-laboratory-based version, with a CS of 
0.87 (95% CI 0.77 to 0.98). Similarly, in China, both the 
non-laboratory-based and laboratory-based equations 
showed overfitting, with CS of 0.81 (0.71–0.91) and 0.88 
(0.78–0.98), respectively. The non-laboratory-based equa-
tion showed overfitting in Africa with a CS of 0.75 (0.36–
1.15). Overfitting patterns persist in South Asia and North 
America/Europe, with CS values of 0.75 (0.65–0.86) and 
0.77 (0.68–0.87), respectively, for the non-laboratory-
based equation. Conversely, the INTERHEART 

laboratory-based equation underfits in Middle Eastern 
populations, with a CS of 1.41 (1.18–1.63).17

External validations of both non-laboratory-based and 
laboratory-based PARS/SPARS equations showed an over-
estimation of observed event rates in the Iranian popula-
tion (χ2 p value of less than 0.001).42 Similarly, external 
validations of both non-laboratory-based and laboratory-
based WHO-2019 equations identified an overestimation 
of CVD risk in Chinese populations (χ2 p value of less 
than 0.001).45 None of the included studies assessed the 
calibration of the Globorisk extension equation11 in an 
external validation study.

DISCUSSION
This study is the first systematic review that summarises 
and compares the HRs, discrimination and calibration 
performance of non-laboratory-based and laboratory-
based CVD risk prediction equations; the evaluated 
equations were externally validated in primary preven-
tion populations. In most CVD equations, the inclusion 
of predictors, such as cholesterol and diabetes, demon-
strated stronger HRs than BMI. Discrimination perfor-
mance was similar between the laboratory and non-
laboratory among the six CVD risk equations reviewed, 
with absolute differences in c-statistics of less than 0.05. 
While c-statistics differences may overlook correlations 
between exposures and outcomes in competing models, 
net reclassification improvement (NRI) addresses this; 
however, most studies in the review did not use NRI, 
emphasising the need for its inclusion in future model 
evaluations.69 The majority of the CVD risk equations, 
both laboratory-based and non-laboratory-based, showed 
discrimination>0.7. However, few studies were well cali-
brated to external validation datasets or populations.

In the systematic review, laboratory-based predictors, 
such as total cholesterol and diabetes, demonstrated 
stronger HRs, indicating better risk stratification, 
whereas non-laboratory measures, such as BMI, had 
weaker HRs and a more limited influence on risk strati-
fication. In most risk equations, laboratory-based models 
show similar c-statistics or slight improvements over non-
laboratory-based models. Adding new variables may not 
significantly affect c-statistics, which often remain similar 
despite added predictors. However, incorporating predic-
tors, such as diabetes and cholesterol, enhances risk strat-
ification by yielding significantly higher HRs, thereby 
improving the identification of individuals at higher CVD 
risk and supporting clinical decision-making.70–73

Similar to our findings, previous studies have iden-
tified that most CVD equations in use had a c-statistics 
greater than 0.7 discrimination performance in external 
validation studies.68 74 75 In our review, 26 out of 30 pairs 
of discrimination measures had a c-statistics of 0.70 or 
higher.

In this review, many of the CVD risk equations showed 
poor calibration during external validation, emphasising 
the need for recalibration. Models with poor calibration 
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Table 2  HR and performance of D’Agostino Framingham and Persian atherosclerotic CVD risk equations

D’Agostino Framingham risk equations (Framingham cohort)

Women

Variables Laboratory-based Non-laboratory-based

β* HR (95% CI) β* HR (95% CI)

Log of age 2.32888 10.27 (5.65 to 18.64) 2.72107 15.20 (8.59 to 26.87)

Log of total cholesterol 1.20904 3.35 (2.00 to 5.62) NA NA

Log of HDL cholesterol −0.70833 0.49 (0.35 to 0.69) NA NA

Log of SBP if not treated 2.76157 15.82 (7.86 to 31.87) 2.81291 16.66 (8.27 to 33.54)

Log of SBP if treated 2.82263 16.82 (8.46 to 33.46) 2.88267 17.86 (8.97 to 35.57)

Smoking 0.52873 1.70 (1.40 to 2.06) 0.61868 1.86 (1.53 to 2.25)

Diabetes 0.69154 2.00 (1.49 to 2.67) 0.77763 2.18 (1.63 to 2.91)

BMI NA NA 0.51125 1.67 (0.98 to 2.85)

C-statistics (95% CI) 0.793 (0.772 to 0.814) 0.785 (0.764 to 0.806)

Men

Log of age 3.06117 21.35 (14.03 to 32.48) 3.11296 22.49 (14.80 to 34.16)

Log of total cholesterol 1.12370 3.08 (2.05 to 4.62) NA NA

Log of HDL cholesterol −0.93263 0.39 (0.30 to 0.52) NA NA

Log of SBP if not treated 1.93303 6.91 (3.91 to 12.20) 1.85508 6.39 (3.61 to 11.33)

Log of SBP if treated 1.99881 7.38 (4.22 to 12.92) 1.92672 6.87 (3.90 to 12.08)

Smoking 0.65451 1.92 (1.65 to 2.24) 0.70953 2.03 (1.75 to 2.37)

Diabetes 0.57367 1.78 (1.43 to 2.20) 0.53160 1.70 (1.37 to 2.11)

BMI NA NA 0.79277 2.21 (1.25 to 3.91)

C-statistics (95% CI) 0.763 (0.746 to 0.780) 0.749 (0.731 to 0.767)

PARS equation in Tehran lipid and glucose cohort

Sex (men and women)

Age 0.04592 1.047 (1.04 to 1.054) 0.04494 1.046 (1.039 to 1.053)

Male 0.71764 2.050 (1.748 to 2.403) 0.76677 2.153 (1.801 to 2.573)

Total cholesterol (mg/dL)  �   �   �   �

<150 – 1 (Reference) NA NA

150–200 0.00956 1.010 (0.627 to 1.625)  �   �

200–250 0.41855 1.520 (0.956 to 2.417)  �   �

250–300 0.55737 1.746 (1.087 to 2.804)  �   �

>300 0.95743 2.605 (1.571 to 4.321)  �   �

SBP (mm Hg)  �   �   �   �

<120 – 1 (Reference)  �  1 (Reference)

120–139 0.15221 1.164 (0.967 to 1.402) 0.21399 1.239 (1.029 to 1.490)

140–159 0.60783 1.836 (1.493 to 2.259) 0.70242  � 2.019 (1.643 to 2.481)

>=160 0.74208 2.100 (1.643 to 2.684) 0.84719 2.333 (1.825 to 2.982)

Diabetes 0.79142 2.207 (1.899 to 2.564) NA NA

High WHR 0.31902 1.376 (1.154 to 1.640) NA NA

Family history of CVD 0.38066 1.463 (1.240 to 1.727) NA NA

Smoking 0.49554 1.641 (1.341 to 2.010) 0.47038 1.601 (1.308 to 1.959)

WHR  �   �   �   �

1 NA  � NA – 1 (Reference)

2  �   �  0.35549 1.427 (1.188 to 1.713)

3  �   �  0.55846 1.748 (1.399 to 2.184)

Continued
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may either underestimate or overestimate the outcome 
of interest.76 Factors, such as limited derivation dataset 
diversity, changes in population characteristics and shifts 
in underlying CVD risk, contribute to lower calibration of 
CVD risk equations.77 However, in our review, we found 
no evidence that calibration differed between laboratory-
based and non-laboratory-based CVD risk equations 
when assessed in the same population.

Recalibration is a statistical adjustment aligning 
predicted and observed risk in the target population.78 
Recalibration is necessary when applying CVD risk 
equations to populations with different underlying risk 
levels.9 35 79 Recalibration methods, such as intercept and 
slope adjustment, piecewise recalibration and transfor-
mation of predictors, can be employed to ensure that 
predicted risks closely match observed outcomes in 
predictive models, thereby enhancing the accuracy and 
reliability of CVD risk assessment.80 81

C-statistics are relatively insensitive to the inclusion of 
new predictors in a model, even when those predictors 
are statistically and clinically significant.71 Evaluating 
calibration in risk equations is challenging, as a slope 
of 1 suggests good calibration, but poor calibration can 
still occur if the intercept is overlooked, emphasising 
the need for a comprehensive assessment that includes 
both slope and intercept, along with other calibration 
metrics.82 The Hosmer–Lemeshow test assesses calibra-
tion by comparing observed and expected event rates 
in subgroups, but it has limitations, such as arbitrary 
groupings and reduced power in small datasets.83 Cali-
bration plots compare predicted and observed risks, but 
smoothing techniques and arbitrary groupings (eg, by 
deciles) can affect accuracy, especially in small datasets. 
These plots may also overlook important or subtle differ-
ences across risk groups, so using them with other metrics 
is recommended for a more comprehensive model 
evaluation.24 83 84 Like other calibration measures, the 
observed-to-expected outcome ratio has a limitation, as 
it only assesses the average agreement between predicted 
and observed risks, without considering variations across 
different risk levels.85 86

This review identified five LMICs, including Bangla-
desh, India, Iran, Pakistan and Zimbabwe, out of a total 
of 24 countries analysed.11 17 18 42 Given that the majority 
of studies were conducted in high-income countries, 
there is a need for further research in LMICs comparing 
laboratory and non-laboratory equations. Most CVD risk 
equations globally have been derived or validated using 
cohorts from high-income settings. However, prospective 
cohort studies in LMICs are scarce, particularly where 
non-laboratory-based CVD risk equations are needed 
due to limited access to laboratory facilities, such as lipid 
testing. This review focuses on externally validated CVD 
risk equations to assess model reproducibility and gener-
alisability. Future research that compares the predic-
tive performance of non-laboratory risk equations with 
laboratory-based models that were not externally vali-
dated is warranted.16 39–41

Strengths and limitations
This is the first review of the discrimination and cali-
bration performance of paired non-laboratory-based 
and laboratory-based CVD risk prediction equations, 
reflecting both comprehensiveness and broad scope, 
while also incorporating the HRs of additional predic-
tors evaluated in competing models to further enhance 
comparison. This review evaluated six externally validated 
CVD risk equations in primary prevention populations 
across 24 countries, providing a comparative analysis that 
offers valuable insights into the performance of various 
prediction models. The inclusion of studies from diverse 
global populations enhances the applicability and gener-
alisability of the findings. Since c-statistics are influenced 
by the composition of the study population (eg, age 
distribution), we only extracted c-statistics from studies 
where laboratory and non-laboratory CVD risk equa-
tions were compared within the same population.71 This 
study focuses on CVD equations that have been exter-
nally validated, thereby providing limited insight into the 
comparison of laboratory and non-laboratory CVD risk 
equations that have not been externally validated. Many 
CVD risk equations are recalibrated before application 

D’Agostino Framingham risk equations (Framingham cohort)

Women

Variables Laboratory-based Non-laboratory-based

β* HR (95% CI) β* HR (95% CI)

4  �   �  0.69904 2.012 (1.577 to 2.567)

History of diabetes NA NA 0.88382 2.420 (2.064 to 2.837)

C-statistics (95% CI) 0.78 (0.76 to 0.79) 0.77 (0.75 to 0.78)

WHR was classified into four categories: 1, 2, 3 and 4, with the following cut-off points: in females, <0.85, 0.85–0.90, 0.90–
0.95 and ≥0.95; in males, <1.00, 1.00–1.05, 1.05–1.10 and ≥1.10.
*estimated regression coefficient.
BMI, body mass index; CVD, cardiovascular disease; HDL, high-density lipoprotein; HR, hazard ratio; NA, not applicable; 
PARS, Persian Atherosclerotic Cardiovascular Disease Risk Stratification; SBP, systolic blood pressure; WHR, waist–hip ratio.

Table 2  Continued
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in new populations to align predicted risks with observed 
outcomes. While this recalibration improves model 
performance, it may obscure differences in the orig-
inal calibration of the equations. Therefore, our review 
focused on non-recalibrated equations to evaluate their 
baseline predictive abilities between laboratory-based and 
non-laboratory-based models. However, in practice, many 
CVD risk equations are recalibrated for the specific popu-
lation they are intended for, which may result in better 
calibration than what was observed in this study.77 Most of 
the studies in this review were conducted in high-income 
countries, while non-laboratory CVD risk equations are 
most applicable in LMICs, emphasising the urgent need 
for prospective cohort studies in LMICs to assess their 
CVD risk profiles and inform the derivation and external 
validation of context-specific equations.

CONCLUSION
The discrimination and calibration measures between 
laboratory-based and non-laboratory-based models show 
minimal differences, demonstrating the insensitivity of 
c-statistics and calibration metrics to the inclusion of 
additional predictors. However, in most reviewed studies, 
the HRs for these additional predictors were substantial, 
significantly altering predicted risk, particularly for indi-
viduals with higher or lower levels of these predictors 
compared with the average.
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