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Abstract
Purpose  We examined whether end-to-end deep-learning 
models could detect moderate (≥50%) or severe (≥70%) 
stenosis in the left anterior descending artery (LAD), 
right coronary artery (RCA) or left circumflex artery (LCX) 
in iodine contrast-enhanced ECG-gated coronary CT 
angiography (CCTA) scans.
Methods  From a database of 6293 CCTA scans, we 
used pre-existing curved multiplanar reformations (CMR) 
images of the LAD, RCA and LCX arteries to create 
end-to-end deep-learning models for the detection of 
moderate or severe stenoses. We preprocessed the 
images by exploiting domain knowledge and employed 
a transfer learning approach using EfficientNet, ResNet, 
DenseNet and Inception-ResNet, with a class-weighted 
strategy optimised through cross-validation. Heatmaps 
were generated to indicate critical areas identified by the 
models, aiding clinicians in understanding the model’s 
decision-making process.
Results  Among the 900 CMR cases, 279 involved 
the LAD artery, 259 the RCA artery and 253 the LCX 
artery. EfficientNet models outperformed others, with 
EfficientNetB3 and EfficientNetB0 demonstrating the 
highest accuracy for LAD, EfficientNetB2 for RCA and 
EfficientNetB0 for LCX. The area under the curve for 
receiver operating characteristic (AUROC) reached 0.95 
for moderate and 0.94 for severe stenosis in the LAD. 
For the RCA, the AUROC was 0.92 for both moderate 
and severe stenosis detection. The LCX achieved an 
AUROC of 0.88 for the detection of moderate stenoses, 
though the calibration curve exhibited significant 
overestimation. Calibration curves matched probabilities 
for the LAD but showed discrepancies for the RCA. 
Heatmap visualisations confirmed the models’ precision 
in delineating stenotic lesions. Decision curve analysis 
and net reclassification index assessments reinforced the 
efficacy of EfficientNet models, confirming their superior 
diagnostic capabilities.
Conclusion  Our end-to-end deep-learning model 
demonstrates, for the LAD artery, excellent discriminatory 
ability and calibration during internal validation, despite a 
small dataset used to train the network. The model reliably 
produces precise, highly interpretable images.

Introduction
Coronary artery disease is the leading cause 
of mortality worldwide.1 Advances in coro-
nary CT angiography (CCTA) have markedly 
enhanced the detection of atherosclerotic 
plaques within the coronary arteries.2 3 Next-
generation photon-counting CT scanners will 
further manifest the role of CCTA as the first-
line tool for coronary imaging.4 CCTA allows 
for a comprehensive evaluation of stenoses, 

WHAT IS ALREADY KNOWN ON THIS TOPIC
⇒⇒ Previous research has demonstrated the potential of 
deep-learning models for detecting coronary artery 
stenoses in curved multiplanar reformations (CMR) 
images. However, most studies have relied on con-
sistent, standardised data from controlled protocols, 
used relatively small datasets and reported good 
performance at various levels.

WHAT THIS STUDY ADDS
⇒⇒ This study uses an end-to-end deep-learning ap-
proach trained on routine clinical CMR images to 
detect moderate and severe stenoses in the left an-
terior descending artery (LAD), right coronary artery 
(RCA) and left circumflex artery (LCX). It addresses 
anatomical challenges with diverse, real-world data 
from multiple hospitals. Advanced preprocessing 
techniques and interpretable heatmaps enhance 
model performance and promote clinical adoption.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

⇒⇒ Integrating routine clinical data into model training 
enhances diagnostic accuracy and promotes the 
adoption of deep-learning models in clinical work-
flows. With area under the curve for receiver operat-
ing characteristic up to 0.95 for the LAD, reasonable 
performance for the RCA and LCX, well-calibrated 
predictions and interpretable heatmaps, these 
findings support efficient management of coronary 
artery disease, improving patient care and guiding 
future research.
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STRENGTHS AND LIMITATIONS OF THIS STUDY
⇒⇒ Achieved an area under the curve of 0.95 for moderate and 0.94 
for severe stenosis in the left anterior descending artery (LAD). 
Calibration curves closely matched observed probabilities, indicat-
ing robust model performance.

⇒⇒ EfficientNet models, optimised with transfer learning and a class-
weighted approach, surpass other deep-learning models in accura-
cy and performance in detecting stenosis in LAD and right coronary 
artery arteries.

⇒⇒ Heatmaps provide visual confirmation of critical areas, enhancing 
the interpretability of the model’s decision-making process.

⇒⇒ The study uses a very diverse dataset.
⇒⇒ The study is limited by a relatively small dataset.
⇒⇒ The study has few positive cases, which may affect the robustness 
of the findings. Hence, for left circumflex artery, detection of severe 
(≥70%) stenosis could not be performed.

⇒⇒ External validation was not conducted, which may limit the gener-
alisability of the findings.

⇒⇒ Potential inclusion bias may arise from the selection of curved mul-
tiplanar reformation images by radiologists, based on their clinical 
needs.

plaque composition, pericoronary tissues and other 
emerging predictors of coronary events.5 6 The inter-
pretation of CCTA images is time-consuming, resource-
intensive and the human eye may overlook subtle 
nuances carrying significant clinical relevance. Deep 
learning has shown exceptional capabilities in cardio-
vascular diagnostics, surpassing human performance in 
several instances,7–10 including CCTA.11 12

End-to-end deep-learning models offer the possibility to 
use raw, unprocessed and data. This, in conjunction with 
high-quality labelling, is a promising approach for CCTA 
and cardiovascular imaging in general.13 We explored the 
feasibility of developing end-to-end models using curved 
multiplanar reformations (CMR) images, thereby elimi-
nating the need for complex segmentation procedures 
and manual interventions. Using various deep-learning 
architectures, we aimed to develop a fully automated 
model capable of detecting significant stenoses in the left 
anterior descending coronary artery (LAD), right coro-
nary artery (RCA) and left circumflex artery (LCX).

Methods
Patient selection
The original database for our study encompassed 6293 
CCTA studies conducted from 2010 to 2021 in Västra 
Götaland County, Sweden, which serves a population of 
1.6 million inhabitants. This database included patients 
of all ages and sexes who underwent iodine contrast-
enhanced ECG-gated CCTA as part of their medical 
management. Only accredited radiologists interpreted 
the CT studies, which were performed in accordance 
with guidelines regarding scanners, administration of 
beta-blockers and sublingual glyceryl nitrate. Most of 
these cases were referred primarily for the evaluation 
of the coronary arteries. To ensure the final model’s 

applicability across a diverse patient spectrum, we did not 
exclude any studies based on the referral cause. Thus, the 
inclusion criterion for our study was the completion of 
an iodine contrast-enhanced ECG-gated CCTA, with an 
expert evaluation of the coronary arteries.

Online supplemental table 1 illustrates the detailed 
breakdown of the total cases for stenosis prevalence in the 
LAD, RCA and LCX artery datasets. The data distribution 
for training, testing and validation across both designed 
tasks,; (50% or greater occlusion) and (70% or greater 
occlusion), is also presented in online supplemental table 
1. Due to the low prevalence of positive stenosis cases, we 
were unable to evaluate the LCX for the detection of 70% 
or greater stenoses.

Curved multiplanar reformations
We included all generated, by the radiologist, CMR 
images. No new CMR images were created specifically for 
this study. Overall, 185 500 CMR images were generated 
across roughly 900 patients, representing 14% of the indi-
viduals in the original database. The number of images 
per reconstruction varied, with counts ranging from 6 to 
128 images per CMR case. While it is true that the use 
of CMR images, generated based on the radiologists’ 
discretion, could introduce a selection bias, the decisions 
were guided by the specific clinical needs and criticality 
of each case. For the main analysis, we focused on studies 
that included a standard stack of 36 images per CMR, 
which was the most common configuration.

In a supplementary analysis, we constructed models 
that processed a varying number of CMR images, ranging 
from 18 to 128, to predict moderate or greater stenosis in 
the LAD and RCA. This experiment aimed to assess the 
impact of variable image counts on model performance, 
reflecting a probable real-world application scenario.

Label extraction
The labels guiding the supervised model were retrieved 
from the radiologist’s final evaluation of the scan. The 
report included information regarding stenoses, plaque 
types, calcium scores and other clinically relevant find-
ings. The written report was used to determine the level 
of stenosis in coronary artery segments 1–15. One physi-
cian trained in CCTA (level 1) interpreted the report to 
classify each segment, and an interventional cardiologist 
provided second opinions in ambiguous cases. The reports 
used a graded classification of the degree of stenosis. The 
following cut-offs were used: 0% stenosis classified as no 
visible stenosis; 1%–24% as minimal stenosis; 25%–49% as 
mild stenosis; 50%–69% as moderate stenosis; 70%–99% 
as severe stenosis and 100% representing total occlusion. 
We did not assess studies that did not evaluate the coro-
nary arteries (n=10).

The labels used for modelling were assigned to the 
entire artery rather than individual segments. The labels 
corresponded to the highest level of stenosis across the 
entire artery. We evaluated performance based on these 
artery-level assessments.
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Figure  (A) The flow of the preprocessing pipeline; (B) A visual representation of each step mentioned in A. HU, Hounsfield 
unit.

Stenosis severity task
We implemented a binary classification approach to 
categorise the severity of stenosis into two separate tasks. 
The first task was designed to identify cases with at least 
moderate (50% or greater) stenoses, while the second 
focused on detecting stenoses that were at least severe 
(70% or greater). This aimed to assess the model’s capa-
bility to accurately predict different levels of narrowing.

Preprocessing
CMR images were extracted from DICOM files and 
cropped to a specific Hounsfield unit (HU), range (−1000 
to 2000) to ensure consistent greyscale representation and 
remove outliers. Following this, the cropped images were 
normalised to a bitmap between 0 and 1. To eliminate 
non-cardiac areas, a mask was generated from the thresh-
olded DICOM image, and a windowing range of 55–800 
HU was applied to select cardiac tissue and intravenous 
contrast. All selected areas were converted to a binary 
bitmap, where voxels within the selected attenuation 

were set to true. This process resulted in multiple islands 
of selected voxels, with islands under 30 voxels being 
removed. Given that the previous windowing primarily 
selected intravenous contrast and some cardiac tissue, a 
10-voxel wide border was added to the mask to ensure 
the capture of all soft plaque and tissue surrounding the 
vessels. Consequently, a mask comprising multiple islands 
was obtained, from which the largest island was selected 
and combined with the normalised bitmap image to 
produce the final cropped bitmap. Figure 1 illustrates the 
flow of the preprocessing pipeline and provides a visual 
representation of each step.

Model building and evaluation
The entire pipeline, including data fetching, preproc-
essing, model training, data splitting and evaluation, 
is illustrated comprehensively in online supplemental 
figure 1.

We explored a range of models, including various Effi-
cientNet14 models from E0 to E3, as well as ResNet15 and 
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DenseNet16 variations, and Inception-ResNet.17 Each 
model was fine-tuned to detect stenosis in these arteries. 
Following a transfer learning paradigm, we froze the 
initial layers and fine-tuned the models on our dataset. To 
ensure compatibility with our target image size, the ‘top’ 
parameter was set to false. We conducted experiments to 
optimise model performance by varying dropout rates 
from 0 to 0.5 and regularisation parameter (lambda) 
values from 0 to 0.001.

To mitigate the effects of class imbalance and prevent 
potential biases in the model, we implemented a class 
dictionary approach. This approach involved adjusting 
the class weights during training to give more impor-
tance to the minority class (positive samples) and less 
importance to the majority class (negative samples). This 
aimed to address overfitting and improve the model’s 
ability to learn from both classes equally. Additionally, 
we used data augmentation techniques such as random 
rotation, horizontal and vertical shifts, zooming, and 
horizontal flipping. These augmentations enhanced the 
model’s robustness and generalisation, contributing to its 
improved performance.

We used fivefold cross validation, repeated five times, 
with data split into training (70%), validation (10%) and 
testing (20%). Multiple metrics were used to assess model 
performance. These metrics included image recognition 
rate (IRR) which is overall accuracy, patient recogni-
tion rate (PRR), F1-score, precision (positive predictive 
value), specificity, and negative predictive value, area 
under the receiver operating characteristic curve (AUC-
ROC), AUC precision-recall (AUC-PR), net benefit (NB), 
decision curve analysis, calibration curves, and the Brier 
score. Additionally, advanced metrics such as the additive 
and absolute net reclassification index (NRI) were used 
to evaluate the models’ improvement in risk prediction, 
enhancing understanding of their clinical utility. Since 
many of these metrics are straightforward and easy to 
understand, a concise explanation of PRR is provided 
below, as it is not as common as others:

The PRR is defined as the average of patient recogni-
tion (PR) where PR is ratio of correctly classified images 
to the total number of images per case. This can be 

expressed as: ‍PRR =
∑N

k=1 PRk
N ‍, N is total test CMR cases.

Interpretable deep learning
Heatmaps were generated to highlight the areas of focus 
used by each model during the prediction process. These 
heatmaps allowed visualisation of which regions of the 
input images were deemed most relevant by the models, 
providing insights into decision-making processes.

Results
We identified a total of 900 cases with CMR images. For 
CMR cases containing 36 images, there were 279 for the 
LAD, 259 cases for the RCA and 253 cases for the LCX. 
When considering CMR cases with 18 or more images, 

the total number of CMRs was 640 for the LAD and 568 
for the RCA.

The EfficientNet models consistently outperformed 
the other deep-learning models across all; LAD, RCA 
and LCX. Specifically, EfficientNetB3 exhibited robust 
performance for moderate or greater stenosis in LAD, 
while EfficientNetB0 emerged as the better model to 
detect severe or greater stenoses. For RCA, EfficientNetB2 
demonstrated the highest performance for moderate and 
severe stenoses or greater. EfficientNetB0 demonstrated 
good performance in detecting moderate stenoses in the 
LCX. However, due to the very few positive cases of severe 
or greater stenoses in the LCX, we were unable to model 
the LCX for this task.

The results represent the best EfficientNet models, as 
judged by accuracy, AUC-ROC and F1 score. All reported 
metrics were evaluated on an artery basis, encompassing 
all segments corresponding to each artery.

Figure 2 illustrates AUC-ROC plots, CI and Brier scores 
for both the LAD and RCA. For moderate stenosis in the 
LAD (figure 2A), we achieved an AUC-ROC of 0.95 with a 
Brier score of 0.086 and a narrow 95% CI of 0.92 to 0.97. 
Similarly, severe stenosis in the LAD (figure 2B) exhib-
ited an AUC-ROC of 0.94, a Brier score of 0.075 and a 
95% CI of 0.89 to 0.99. In figure 2C, the model’s perfor-
mance in identifying moderate or greater stenosis in the 
RCA showed a mean AUC of 0.92 with a Brier score of 
0.065 and a wider 95% CI of 0.85 to 0.95. Furthermore, 
figure 2D displays the performance for severe stenosis in 
the RCA, indicating a mean AUC of 0.92, a Brier score of 
0.05 and a 95% CI of 0.87 to 0.97. The narrower CI for 
the LAD suggests more consistent model performance in 
predicting stenosis compared with the RCA, indicating 
greater reliability. This implies that the model’s predic-
tions for the LAD artery are more stable across different 
scenarios, enhancing confidence in clinical applications. 
However, this consistency is also evident through calibra-
tion and other metrics (later subsection).

Detailed AUC-ROC plots, depicting performance for 
each fold along with corresponding Brier scores, are 
presented in online supplemental figure 2. Each subplot 
illustrates six curves, representing fivefold and their 
mean, showcasing individual fold outcomes.

Along with AUC-ROC, AUC-PR was also calculated. 
The mean AUC-PR for LAD moderate or greater stenosis 
and severe or greater stenosis were 0.94 and 0.85, respec-
tively, while for RCA, they were 0.79 and 0.56.

For moderate stenosis in the LCX, an AUC-ROC of 
0.88 with a Brier score of 0.0692 and 95% CI of 0.78 to 
0.98 was achieved.

Calibration
Figure 3 shows the calibration results for both prediction 
tasks for LAD and RCA. Figure 3A shows the calibration 
for the prediction of moderate stenoses in the LAD, 
whereas figure 3B shows the calibration for severe sten-
oses. In both panels, the calibration curve is well aligned 
with the observed probabilities, particularly below 50% 
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Figure 2  The AUC-ROC along with 95% CI and Brier score for both LAD and RCA for all tasks. (A, B) LAD, (C, D) RCA. (A) 
Prediction of moderate or more stenosis in LAD. (B) Prediction of severe or more stenosis in LAD. (C) Prediction of moderate or 
more stenosis in RCA. (D) Prediction of severe or more stenosis in RCA. AUC-ROC, area under the curve for receiver operating 
characteristic; LAD, left anterior descending artery; RCA, right coronary artery.

probability (which may have the greatest impact on sensi-
tivity).

Similarly, figure  3C,D presents calibration results for 
the RCA. Figure 3C displays calibration for the prediction 
of moderate stenoses and figure 3D shows the results for 
severe stenoses. The calibration curves in these figures 
highlight significant deviations from the ideal prediction, 
including both overestimation and underestimation of 
risk.

Figure 4 displays the evaluation performance for LCX 
moderate cases. It reveals that LCX achieved an AUROC 
of 0.88, accompanied by broader CIs (figure 4A,B). The 
calibration curve showed a significant overestimation of 
risk at higher (figure 4C). At thresholds ranging from 0% 
to 1%, sensitivity was observed between 0.8 and 0.78, with 
precision consistently below 60%. LCX performance was 
lower compared with LAD and RCA, likely due to fewer 
positive cases available for evaluation.

Threshold-dependent metrics
Threshold-dependent metrics were analysed across a 
decision threshold ranging from 0% to 50% probability 
of stenosis. Sensitivity, specificity, precision, negative 
predictive value, IRR and PRR were plotted against this 
threshold range in online supplemental figure 3.

In online supplemental figure 3A, depicting moderate 
stenosis in the LAD, it was observed that even at low 
thresholds (0.05 (5%) to 0.1 (10%)), sensitivity and nega-
tive predictive value consistently exceeded 90%, and the 
PRR was above 70%. Precision and specificity increased 
from 0.6 to 0.7, 0.6 to 0.78, respectively. Furthermore, 
with increasing decision thresholds up to 0.2, sensitivity 
and negative predictive value remained relatively stable 
in the 90s. Meanwhile, the PRR, specificity and precision 
showed rapid increases, approaching 85%. This suggests 
that adjusting the threshold within this range can 
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Figure 3  The calibration curve for all cases and tasks. (A) Calibration results for predicting moderate stenosis in LAD. (B) 
Calibration results for severe stenosis in LAD. (C) Calibration results for predicting moderate stenosis in RCA. (D) Calibration 
results for severe stenosis in RCA. LAD, left anterior descending artery; RCA, right coronary artery.

significantly impact these metrics, particularly precision 
and specificity, without substantially affecting sensitivity 
and negative predictive value.

In online supplemental figure 3B (severe stenosis in 
LAD), steeper positive changes in the range of 0.05–0.5 
were noticed for precision, specificity and PRR, while the 
negative predictive value did not change much. Sensi-
tivity dropped from 0.9 to 0.78 within the threshold range 
of 0.05–0.5.

From online supplemental figure 3C,D (representing 
moderate and severe stenosis in RCA), it is observed 
that sensitivity drops to 0.53 and 0.44, respectively, as the 
threshold reaches 50%. In comparison, precision reaches 
0.82 and 0.68 at the same threshold. The PRR remains 
around 0.90 or higher for most thresholds.

Heatmaps for interpretable deep learning
Figure 5 illustrates a colour-coded heatmap generated by 
the best-performing model for both LAD and RCA test 

cases. This figure includes four examples for each artery, 
where each example shows the original images alongside 
blended images. The blended images overlaid on the 
original CCTA image with colours indicating the areas 
of focus by the model. The side activation bar shows the 
value of each colour and its intensity in predicting the 
outcome. From the figure, it is evident that the model 
performs well in detecting calcified plaque but struggles 
to identify soft plaque, which has a very similar density 
to surrounding tissue. This indicates a limitation in the 
model’s ability to differentiate between soft plaque and 
surrounding structures.

To compare the heatmaps, generated by a series of 
EfficientNet, we put additional figure in online supple-
mental appendix. Online supplemental figure 4 shows 
an example of a colour-coded heatmap, corresponding 
to the output from the three best-performing neural 
network architectures (EfficientNetB3, EfficientNetB2 
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Figure 4  The AUC-ROC along with 95% CI and Brier score, calibration, evaluation metrics (threshold range 1%–50%) for 
LCX. (A) AUROC curve for each fold along with mean. (B) Mean AUROC with 95% CI. (C) Calibration curve. (D) Valuation of 
various metrics on the threshold range from 0% to 50%. AUC-ROC, area under the curve for receiver operating characteristic; 
LCX, left circumflex artery.

and EfficientNetB0). These heatmaps represent areas 
where the neural networks are focusing to make a deter-
mination about the presence of stenosis. EfficientNetB3 
shows a heatmap with a concentration of warm colours 
(reds and yellows) around the stenosis, indicating high 
attention in that region, suggesting that the model 
predicts this area as being significant for the diagnosis 
of stenosis. The EfficientNetB2 heatmap shows a similar 
pattern, with warm colours around the stenosis, but with 
a more diffused pattern extending along the artery and in 
non-relevant regions. Lastly, the EfficientNetB0 heatmap 
also highlights the area of stenosis, with a very concen-
trated area at the stenosis, with less spread around the 
lesion. Overall, the models exhibited greater attention to 
calcified plaques and were less attentive to soft plaques.

Models using variable number of CMR images
Online supplemental figures 5−8 show the performance 
of LAD and RCA for both tasks with varying numbers of 
CMR images per case. As evident in online supplemental 
figure 5, we achieved similar model performance for 
LAD when using a variable number of images per CMR. 
An AUC-ROC of 0.93 was achieved for LAD moderate or 

greater stenosis, with a narrow CI. Calibration showed 
slight underestimation in the lower probability range 
and overestimation in the higher probability range. This 
behaviour was also observed for LAD severe or greater 
stenosis (online supplemental figure 6) with an AUC-
ROC of 0.92. For RCA (online supplemental figures 7,8), 
however, calibration appeared mostly overestimated, and 
the mean AUC-ROC dropped.

Decision analysis curve
This analysis (online supplemental figure 9) shows how 
the NB behaved across decision thresholds. Efficient-
NetB3 for moderate stenosis exhibits high NB across 
the low threshold range (0–0.292), a critical range for 
detecting subtle stenoses. Thus, EfficientNetB3 was 
considered the best model for the task.

Online supplemental figure 10 shows corresponding 
results for predicting severe stenosis in LAD. It is noted 
that EfficientNetB0 shows higher performance in the 
critical threshold ranges.

Additive and absolute NRI
The NRI offers additional insight into how effectively a 
new model enhances risk prediction compared with a 
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Figure 5  Heatmaps for LAD and RCA. (A) Heatmaps of LAD test cases. (B) Heatmaps of RCA test cases. LAD, left anterior 
descending artery; RCA, right coronary artery.

reference model. The EfficientNetB3 model achieves the 
highest NRI index (both additive and absolute; online 
supplemental figure 11) for predicting moderate stenosis 
in LAD. Similarly, for severe stenosis in LAD, the Effi-
cientNetB0 model exhibited favourable performance 
(online supplemental figure 12).

Discussion
We developed an end-to-end model capable of detecting 
coronary artery stenoses with very high accuracy, despite 
a relatively small training set. This underscores the poten-
tial for end-to-end deep-learning models to attain clinically 
meaningful results even with limited training data. We 
expect that model performance will increase substantially 
with the use of all 6322 cases in our dataset. Indeed, the 
development of an accurate deep-learning model for CCTA 
analysis could be a game-changer for outpatient investi-
gations and emergency room settings, where swift and 
precise triage of chest pain patients is crucial. Immediate 

and reliable detection of atherosclerotic plaques and acute 
coronary syndromes will improve clinical decision-making, 
save lives and reduce healthcare costs.

Other research groups have also used CMR images to 
detect coronary stenoses. To the best of our knowledge, 
the largest study to date is the CNN-CASS study (n=828), 
which deployed a Shuffle Net V2-based approach, with 
a fixed 50-image stack per CMR, achieving 80% patient-
level accuracy for stenosis classification.18 Employing 
a token-mixer architecture (ConvMixer), Penso et al 
achieved high sensitivity for significant stenosis classifica-
tion.19 While they did not report calibration plots, our 
model for LAD performs better. A transformer network 
with self-supervised learning by Bian et al obtained 
impressive accuracy and specificity using only 78 patients 
for training and testing. However, our study differs by not 
only providing high accuracy but also delivering inter-
pretability through heatmaps and broader applicability 
by not restricting image counts per CMR. Unfortunately, 
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the omission of calibration plots in most of the previ-
ously published studies make the comparison with our 
models difficult.20 Zreik et al used a multitask recurrent 
convolutional neural network (RCNN) on CMR images 
from 163 scans. The RCNN performed two simultaneous 
classification tasks for plaque type (morphology) and 
stenosis severity. Assessing the detection of significant 
stenosis versus no or non-significant stenosis, the method 
attained accuracies of 0.94, 0.93 and 0.85 at the segment, 
artery and patient levels, respectively.21 Hampe et al used 
CCTA and deep learning to predicting the functional 
significance of stenosis using invasively measured FFR 
(fractional flow reserve) as labels.22 Although they report 
a moderate AUC, predicting functional significance is a 
critical task. We aim to pursue this task using our dataset 
which includes >1000 invasive FFR measurements.

It is important to recognise that our study design 
presented a considerable challenge for the neural networks. 
The task at hand was to identify the occurrence of either 
moderate (the first model) or severe (as per the second 
model) stenosis in any segment of the LAD or RCA or LCX, 
given the entire stack of CMR images as input, including 
with a variable number of input size. Thus, the impressive 
results, particularly for the LAD, demonstrate the opportu-
nities for end-to-end models and transfer learning.

Although the models for the LAD artery achieved 
impressive results, the performance of the models 
for the RCA and LCX was less efficient. The relatively 
uniform anatomy of the RCA, which in a majority of cases 
gives rise to the posterior descending artery, suggests 
that anatomical complexity is an unlikely cause. Addi-
tionally, there is no evidence indicating an increased 
incidence of artefacts in RCA reconstructions. The 
most conspicuous factor is the limited size of the RCA 
training dataset, which almost certainly impacts model 
performance. The lower performance of the LCX can 
be attributed to the very small number of stenosis prev-
alent cases and its more complex anatomy compared 
with the LAD. Furthermore, class imbalance within the 
training set and a lower prevalence of stenoses could 
further hamper the neural network’s ability to discern 
abnormalities. Finally, potential ambiguities in the RCA 
and LCX labelling process might contribute to the infe-
rior model performance.

We deployed a comprehensive approach, which involved 
training various models with different architectures and 
optimisation strategies, ultimately resulting in AUC-ROC 
scores surpassing 94%. However, the tendency of these 
models to overestimate and underestimate risks necessi-
tates a careful balance between discriminative power and 
calibration accuracy to refine risk prediction. Obviously, it 
is important to bear in mind that these results were derived 
using internal testing data. External validation is required 
to corroborate these findings. To support the replication of 
our study, we have made the preprocessing and training code 
available on GitHub (https://github.​com/Vibha190685/
DL-for-Detection-of-Coronary-Artery-​Stenosis/tree/
master).

Interpretable AI is key to bolster model transparency 
and build clinician trust. Therefore, we created heatmap 
visualisations explaining the decisions of the predic-
tion model. These heatmaps pinpoint the areas that the 
models identify as critical for stenosis prediction within 
the CCTA images, thereby elucidating the rationale 
behind the models’ decisions. This aims to boost trust in 
the application of deep learning within a clinical context. 
Although deep learning is likely to become the principal 
resource for clinical decision-making in the future, we 
anticipate a series of transitional stages. In these phases, 
a collaborative evaluation by human experts will be para-
mount, initially positioning human judgement at the 
forefront of diagnostic decisions.

Despite data limitations, our models demonstrated 
robust performance across multiple diagnostic tasks. Effi-
cientNet series outperformed models like ResNet and 
DenseNet due to its balanced compound scaling method, 
scaling depth, width and resolution uniformly, ensuring 
better performance without significantly increasing 
model size. We believe that the preprocessing techniques 
employed refined the models’ focus, effectively filtering 
out irrelevant data to concentrate on relevant features. As 
judged by the heatmaps (online supplemental material), 
our models showed a higher proficiency in identifying 
calcified plaques compared with low-attenuating (soft) 
plaques. Recognising soft plaques is critical as they are 
more susceptible to future acute coronary syndromes.23 24 
We anticipate that expanding our dataset to include 18 000 
cases will enhance the model’s ability to accurately detect 
high-risk plaques. This expansion enables us to conduct 
individual assessmentd of both soft and calcified plaque, 
further refining the model’s performance in these crit-
ical domains. The addition of more data, including addi-
tional cases of RCA and LCX, will allow us to improve the 
model’s performance for these specific cases.

In conclusion, our study marks a significant advance in 
the fusion of deep learning and cardiac imaging, providing 
a powerful predictive model that stands to benefit from an 
enlarged training dataset and further external validation. 
The model’s end-to-end architecture is a cornerstone of its 
strength, supporting ongoing improvement and large-scale 
deployment. Moreover, its interpretability enhances its clin-
ical value, bridging the gap between artificial intelligence 
and practical healthcare applications.
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